11. Largest product in a grid
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
maxProduct
用来找出数组中最大的连续四个数字之积,分别作用在矩阵每行上就可以找出水平方向的最大值。垂直方向转置一下,而对角线可以用 Diagonal
函数找到。
data = ImportString[#, "Table"] & @ "\
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48";
diagonals[array_] := Diagonal[array, #] & /@ Range[-#, #] & @ (Length[array] - 4)
maxProduct[array_] := Max[Times @@@ Partition[#, 4, 1] & /@ array]
Max[maxProduct /@ {#, Transpose[#], diagonals[#], diagonals[Reverse /@ #]}] & @ data
(* 70600674 *)
12. Highly divisible triangular number
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1, 3
6: 1, 2, 3, 6
10: 1, 2, 5, 10
15: 1, 3, 5, 15
21: 1, 3, 7, 21
28: 1, 2, 4, 7, 14, 28We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
三角形数用内置函数 PolygonalNumber
得到。
SelectFirst[Length[Divisors[#]] > 500 &] @ PolygonalNumber @ Range[12500]
(* 76576500 *)
13. Large sum
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
…
53503534226472524250874054075591789781264330331690
啊!这。
FromDigits @ Take[#, 10] & @ IntegerDigits @ Plus[
37107287533902102798797998220837590246510135740250,
46376937677490009712648124896970078050417018260538,
74324986199524741059474233309513058123726617309629,
91942213363574161572522430563301811072406154908250,
23067588207539346171171980310421047513778063246676,
89261670696623633820136378418383684178734361726757,
28112879812849979408065481931592621691275889832738,
44274228917432520321923589422876796487670272189318,
47451445736001306439091167216856844588711603153276,
70386486105843025439939619828917593665686757934951,
62176457141856560629502157223196586755079324193331,
64906352462741904929101432445813822663347944758178,
92575867718337217661963751590579239728245598838407,
58203565325359399008402633568948830189458628227828,
80181199384826282014278194139940567587151170094390,
35398664372827112653829987240784473053190104293586,
86515506006295864861532075273371959191420517255829,
71693888707715466499115593487603532921714970056938,
54370070576826684624621495650076471787294438377604,
53282654108756828443191190634694037855217779295145,
36123272525000296071075082563815656710885258350721,
45876576172410976447339110607218265236877223636045,
17423706905851860660448207621209813287860733969412,
81142660418086830619328460811191061556940512689692,
51934325451728388641918047049293215058642563049483,
62467221648435076201727918039944693004732956340691,
15732444386908125794514089057706229429197107928209,
55037687525678773091862540744969844508330393682126,
18336384825330154686196124348767681297534375946515,
80386287592878490201521685554828717201219257766954,
78182833757993103614740356856449095527097864797581,
16726320100436897842553539920931837441497806860984,
48403098129077791799088218795327364475675590848030,
87086987551392711854517078544161852424320693150332,
59959406895756536782107074926966537676326235447210,
69793950679652694742597709739166693763042633987085,
41052684708299085211399427365734116182760315001271,
65378607361501080857009149939512557028198746004375,
35829035317434717326932123578154982629742552737307,
94953759765105305946966067683156574377167401875275,
88902802571733229619176668713819931811048770190271,
25267680276078003013678680992525463401061632866526,
36270218540497705585629946580636237993140746255962,
24074486908231174977792365466257246923322810917141,
91430288197103288597806669760892938638285025333403,
34413065578016127815921815005561868836468420090470,
23053081172816430487623791969842487255036638784583,
11487696932154902810424020138335124462181441773470,
63783299490636259666498587618221225225512486764533,
67720186971698544312419572409913959008952310058822,
95548255300263520781532296796249481641953868218774,
76085327132285723110424803456124867697064507995236,
37774242535411291684276865538926205024910326572967,
23701913275725675285653248258265463092207058596522,
29798860272258331913126375147341994889534765745501,
18495701454879288984856827726077713721403798879715,
38298203783031473527721580348144513491373226651381,
34829543829199918180278916522431027392251122869539,
40957953066405232632538044100059654939159879593635,
29746152185502371307642255121183693803580388584903,
41698116222072977186158236678424689157993532961922,
62467957194401269043877107275048102390895523597457,
23189706772547915061505504953922979530901129967519,
86188088225875314529584099251203829009407770775672,
11306739708304724483816533873502340845647058077308,
82959174767140363198008187129011875491310547126581,
97623331044818386269515456334926366572897563400500,
42846280183517070527831839425882145521227251250327,
55121603546981200581762165212827652751691296897789,
32238195734329339946437501907836945765883352399886,
75506164965184775180738168837861091527357929701337,
62177842752192623401942399639168044983993173312731,
32924185707147349566916674687634660915035914677504,
99518671430235219628894890102423325116913619626622,
73267460800591547471830798392868535206946944540724,
76841822524674417161514036427982273348055556214818,
97142617910342598647204516893989422179826088076852,
87783646182799346313767754307809363333018982642090,
10848802521674670883215120185883543223812876952786,
71329612474782464538636993009049310363619763878039,
62184073572399794223406235393808339651327408011116,
66627891981488087797941876876144230030984490851411,
60661826293682836764744779239180335110989069790714,
85786944089552990653640447425576083659976645795096,
66024396409905389607120198219976047599490197230297,
64913982680032973156037120041377903785566085089252,
16730939319872750275468906903707539413042652315011,
94809377245048795150954100921645863754710598436791,
78639167021187492431995700641917969777599028300699,
15368713711936614952811305876380278410754449733078,
40789923115535562561142322423255033685442488917353,
44889911501440648020369068063960672322193204149535,
41503128880339536053299340368006977710650566631954,
81234880673210146739058568557934581403627822703280,
82616570773948327592232845941706525094512325230608,
22918802058777319719839450180888072429661980811197,
77158542502016545090413245809786882778948721859617,
72107838435069186155435662884062257473692284509516,
20849603980134001723930671666823555245252804609722,
53503534226472524250874054075591789781264330331690]
(* 5537376230 *)
14. Longest Collatz sequence
The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)Using the rule above and starting with 13, we generate the following sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
Collatz 序列的递归函数本身很好写,不过简单的实现会很慢,10⁴ 项要算一秒多:
collatzFunc[n_] := If[EvenQ[n], n / 2, 3n + 1]
collatz[n_] := NestWhileList[collatzFunc, n, # > 1 &]
First @ MaximalBy[Range[1*^4], Length @* collatz] // AbsoluteTiming
(* {1.422, 6171} *)
编译一下试试:
collatzFunc = Compile[{{n, _Integer}}, If[EvenQ[n], Quotient[n, 2], 3n + 1]];
collatz[n_] := NestWhileList[collatzFunc, n, # > 1 &]
First @ MaximalBy[Range[1*^4], Length @* collatz] // AbsoluteTiming
(* {0.6264, 6171} *)
嗯,还是要换算法。首先想到的算法是:从 1 到 N 的列表开始,每次对第一个元素生成 Collatz 序列,然后从列表中移除出现的元素,直到列表为空;每次迭代用 Sow
抛出 Collatz 序列的长度,最后用 Reap
收集并找到最大值。然而……并没有变快:
MaximalBy[
Reap[NestWhileList[
With[{c = collatz @ First[#]}, Sow[{First[#], Length[c]}]; Complement[#, c]] &,
Range[1*^4],
# != {} &]][[-1, 1]],
Last][[1, 1]] // AbsoluteTiming
(* {0.986983, 6171} *)
再想别的办法。注意到 Collatz 序列很多时候会利用之前算过的结果,因此考虑「以空间换时间」,把已经计算过的序列长度存入一个键值对列表,之后再碰到相同的数字时即可查表解决。为了提速,这里没有用 Association
,而是用了比较新的 HashTable
数据结构,这也是 12.1 的新功能:
collatzData = CreateDataStructure["HashTable"];
collatzData["Insert", 1 -> 1];
collatzLength[n_] := Module[{i = n, len = 1},
While[!collatzData["KeyExistsQ", i],
i = collatzFunc[i];
len++;
];
collatzData["Insert", n -> len + collatzData["Lookup", i]]
]
First @ Keys @ MaximalBy[collatzLength /@ Range[1*^6]; Normal @ collatzData, Value]
(* {17.5281, 837799} *)
至少能在可以接受的时间内算出来了。
如果换 C++ 用相同的算法重写一遍:
#include <algorithm>
#include <iostream>
#include <unordered_map>
class Collatz {
typedef std::pair<uint32_t, uint32_t> Pair;
std::unordered_map<uint32_t, uint32_t> data {{1, 1}};
inline void next(uint32_t & n) { n = n % 2 ? 3 * n + 1: n / 2; }
void update(uint32_t n) {
uint32_t i = n;
uint32_t len = 0;
while (data.find(i) == data.end()) { next(i); ++len; }
data[n] = len + data[i];
}
public:
uint32_t maxLength(uint32_t n) {
for (auto i = 1; i <= n; ++i) update(i);
auto result = std::max_element(
data.begin(),
data.end(),
[] (const Pair & a, const Pair & b) -> bool {
return a.second < b.second;
});
return result->first;
}
};
int main() {
Collatz collatz;
std::cout << collatz.maxLength(1e6) << std::endl;
}
$ g++ -std=c++17 -Wall -O2 14.cc && time ./a.out
837799
./a.out 0.30s user 0.02s system 73% cpu 0.443 total
这速度,咱还能说啥呢?
15. Lattice paths
Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.
How many such routes are there through a 20×20 grid?
小学奥数教过的技巧:最上面一行和最左边一列都标上 1,然后格点处相加。这样得到的就是杨辉三角形,因此可化为二项式系数计算。
Binomial[2n, n] /. n -> 20
(* 137846528820 *)
16. Power digit sum
2¹⁵ = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2¹⁰⁰⁰?
这么说吧,在我的机器上,Wolfram Language 支持的最大数字 $MaxNumber
大概是 22⁵²。
Total @ IntegerDigits[2^1000]
(* 1366 *)
17. Number letter counts
If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.
If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of “and” when writing out numbers is in compliance with British usage.
IntegerName
加上 "Words"
参数可以把数字转换成对应的单词(还可以选择语言)。然而需要注意「几百几十几」的拼写中并没有「and」一词,也许是遵循了美式英语的习惯?Anyway,那我们手动替换一下。
之后要移除空格和连字符。这里它用了 \[Hyphen]
(U+2010 ‐
)而非 \[RawDash]
(U+002D -
),要注意区分。
Total @ StringLength @ StringDelete[" " | "\[Hyphen]"] @
StringReplace["hundred " -> "hundred and "] @ IntegerName[Range[1000], "Words"]
(* 21124 *)
18. Maximum path sum I
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
既然都指出来了,那就不用暴力枚举了。
一种思路是「对于上层的每一个数,都选下层较大的那个数走」,具体参考酱紫君的答案。
我这儿就无脑调库,先把数据变成图,然后拿 FindShortestPath
找最短路径。为了方便,还加上了 "Begin"
和 "End"
作为头尾结点。FindShortestPath
只考虑边的权重,而且因为我们是找最大值,所以别忘记要加一个负号:
data = ImportString[#, "Table"] & @ "\
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23";
dataToGraph[data_] := With[{len = Length[data]},
Graph[
Flatten @ {
"Begin" -> {1, 1},
Table[{i, j} -> {i + 1, #} & /@ {j, j + 1}, {i, len - 1}, {j, i}],
{len, #} -> "End" & /@ Range[len]
},
EdgeWeight -> -Join[
Flatten @ ReleaseHold[# /. {b_, x__, e_} -> {b, Hold @ Riffle[{x}, {x}], e} & /@ data],
Table[0, len]
]
]
]
maxPathSum[data_] := Module[{graph = dataToGraph[data], path, edgePos},
path = PathGraph[FindShortestPath[graph, "Begin", "End"], DirectedEdges -> True];
edgePos = Flatten[Position[EdgeList @ graph, #] & /@ EdgeList @ path];
-Total @ AnnotationValue[graph, EdgeWeight][[edgePos]]
]
maxPathSum[data]
(* 1074 *)
图和找到的路径还可以可视化:
HighlightGraph[graph, path, GraphLayout -> "LayeredDigraphEmbedding", ImageSize -> 600]
19. Counting Sundays
You are given the following information, but you may prefer to do some research for yourself.
- 1 Jan 1900 was a Monday.
- Thirty days has September,
April, June and November.
All the rest have thirty-one,
Saving February alone,
Which has twenty-eight, rain or shine.
And on leap years, twenty-nine.- A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.
How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?
日期的计算最好还是用库来做,自己处理格里历、儒略历换算这些坑比较麻烦(当然 20 世纪是没什么问题的)。
Count[_?(DayMatchQ[#, Sunday] &)] @ DayRange["1901-01-01", "2000-12-31", "BeginningOfMonth"]
(* 171 *)
20. Factorial digit sum
n! means n × (n − 1) × … × 3 × 2 × 1
For example, 10! = 10 × 9 × … × 3 × 2 × 1 = 3628800,
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.Find the sum of the digits in the number 100!
不废话,直接算:
Total @ IntegerDigits[100!]
(* 648 *)